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itroduction Terminology & Notation

° For:n:(:cl,...,xn)GQ",xi:%withai/\bizl,

ht(z) := max{|a;|, [b:|},

e X CR",

\X(@, T):={z € X NQ;ht(x) < T}\

e “X has few rational points of height < 7" means subpolynomial bound:

Ve >0,3C., #X(Q,T) < C.T°

e “Better bound" means poly-log bound:

[ #X(@Q.T) <alog’ T

e Bézout bound:

Zy(X):= sup #(X NP H0)).
PeRg[z]\{0}




Introduction Strategies

Following Bombieri & Pila’s approach, showing that a given set X has few
rational points amounts:

e Yomdin-Gromov decomposition: For each k& € N covering X by a finite
number of C*-charts with all derivatives bounded by 1,

e Bézout bound: Showing that Z4(X) is uniformly bounded with respect
to all nonzero polynomials Py of degree < d.

Following Binyamini and Novikov’s approach: control the number of
Weierstrafs polydiscs covering X through their size, using Bernstein indices
in holomorphic-Noetherian setting or metric entropy measures in the
Pfaffian context of R*F.



Introduction Strategies

Remark. For better bounds one needs to accurately control the number of
charts and Z; (polynomial in d).

For this, following Bombieri & Pila’s strategy we can split difficulties in two:

1. Take X in a geometric structure where polynomial Bézout bounds are
available, and work on the number of C*-charts.

(Binyamini & Novikov’s approach for R*®, C.-Miller for noncompact
oscillatory “slow" sets).

2. Take X given by one convenient chart (e.g. a graph) and work on Zy4
(C.-Yomdin, Villemot).

From now on, X is a graph of a function or a parameterized curve.




Introduction Notation

f: D — C an analytic function (D: domain /R or /C...),
e I'y the graph of f,
e Za(f):= sup #{P(z f(2)) =0} € NU{oo}.

PePy\{0}

e Z4(f) is the maximum number of intersection points between I'y and
algebraic curves of degree < d.

e In case f is a polynomial, Z4(f) is polynomially bounded in d (and
deg f) when the intersection is transverse.

e Z4(f) < oo or I'y contains a piece of algebraic curve (of dimension 1).

We assume Vd € N, Z4(f) < oo, ie f is a transcendental function.




Introduction B&P and P&W results

Sub-polynomial bounds
e [Bombieri & Pila 1989]: f : [0,1] — R analytic then
Ve >0 3Cr. st. #I5(Q,T) < Cr.T".

e [Pila & Wilkie 2006]: Same result for X C R™ an o-minimal set:

Ve >03Cx.e st. #X"™S(Q,T) < Cx . T°.

Xtrans = X \ Xalg’
X8 .= {1 € X;3S semialgebraic of pure dimension 1, s.t. 2 € S C X}.



Interlude Bombieri & Pila’s proof
(d+1)(d+2)
2
o If #T'4(Q,T) < p , then I'f(Q, T) is contained in a single set P = 0,

with P € R<4[X,Y]. So we may assume #I';(Q,T) > p.
o Let A1,..., Ay € T4(QT), Ai = (as, f(@), ALY = af 7 (as),

Fix T,d > 0,1 C [0,1] and denote p = = dim(R<4[X, Y]).

M = (A)icyarp<as

A = det(M).
. A] < Calr] 5 (%)

* On the other hand, if A # 0, then [],, [pfqdA| > 1, where p;, q; are
the denominators of a; and f(a;).

= |A| > T2 ()

Conclusion (x) + (xx): |I] < C&T%ﬁ = A=0.



Bombieri-Pila: Proof

Assume for simplicity f : [0,1] — R.

Let I C [0,1], [I| < C&T%. On needs N ~ %T% intervals T to
cover [0,1].  Note that vq := f—fll ~52-0 asdd — 00.

For any choice of Ay,..., A, € T51(Q,T), A;; =0 thus

rank(M) < p.

Let A1,..., A, € T511(Q,T) realize the maximum rank r for M and
let M a maximal minor in M  (the upper left hand corner minor...).
Let (a, 8), a + 8 < d, an exponent not appearing in M.

The non-zero polynomial Pr(X,Y) € R<4[X, Y]

Xty h
. X2y B2

Pi(X,Y) = det M

Xaryﬂr
af f(ar)? -+ af(ar)?  X°VP

cancels at any point of I'y;;(Q,T'), as a minor of size r + 1 of M.



Introduction Q-points and Bézout bound

Remark. [Pila 2006, Prop. 2.4]: T'f(Q,T) is contained in a certain number
of hypersurfaces of R? of degree d, this number being bounded by

CyaT"?,
e Cf.4 depends on d and comes from analytic bounds on |f®| (linearly
in A, |f®(z)/k!] < AF).
o for d = |logT|, T"* and C4 are constant independent of T'.

Consequence 1 (Bombieri-Pila’s end of proof).
For € > 0 given, find d := d. large enough s.t. v4. <e:

#I5(Q,T) < Q(A,de) X Za (f) x T". O

Consequence 2 (possible better bound). For f : [0,1] — R analytic,
transcendental

#Ff (Q7 T) S C(A) X Z[log T| (f)
In particular when f has a polynomial Bézout bound one gets a better
bound

Jo, B st #T,(Q,T) < alog’ T (vs Ve >0, #I4(Q,T) < aC.T%)



Introduction Q-points and Bézout bound

Natural directions for better bounds

1. Non-compact domain. Find a class of C* f : [a, +0c0o[— R with
e Vp > 0, fast enough decay for \f(f’>|.
e Vd > 1,VI C [a, +oo[, polynomially controlled Z4(fj;) w.r.t. d and
length(7),

2. Compact domain. Find analytic functions f : D — R with Z4(f)
polynomially bounded in d.



Part 1 Non compact case: oscillatory graphs and curves

Better bound for #I'¢(Q,T)

e (oscillatory) functions f : [a, +oo[— R,

e more generally for possibly non compact and/or oscillatory curves
I cR™



Part I Non compact case: oscillatory graphs and curves

Definition. The C*°-parametrization v = (£, g) : [a, +00[— R? of the curve
I' C R? is slow when
1. Ju e R, Vz, |u— f(z)] < b(z) 0,
P (g gP(z
) < gpta), 121

loaC
3 constants A, B,C, D s.t. Vz, pp(z) = D(Aps%)p'

2. Vp Z 07vw7 | | S SDP(':E)7 where

Remark. Functions satisfying 2 yield a subalgebra of C*°([a, +00[) stable
under derivation.

Example. g := holog’, where £ > 1 and 3o, Vp > 0, |hP) ()| < oP.
Definition. ¢ : [a, +0o[— R is a height control function of v when
v D(QT)) € [, p(T)]:
Examples. For f slow:
e when u € Q and f doesn’t take the value u, one can take
o(T) = bil(%)7 for some K.
e When u € Q, and is not a U-number of degree 1 in Mahler’s

classification, one can take ¢(7T') = bil(TiK), for some K.



Part I Q-points of oscillatory curves

Theorem. [C.-Miller 2017| Let v be a slow parametrization of a
transcendental curve I';, with height control function ¢, T'> 1, d > 1 and

Zga = sup #P~'(0) N7([a, A]),
PGRd[X,Y]\{O}
then
#0(Q,T) < alog’(T) x log” ((T)) X Ziog .0(T)-

Consequence. When e#™) and Zq,a are polynomially bounded in T, d, A
then

#I'(Q.T) < alog”(T).
Examples. Built on elementary functions composed with log’
= Slowness & Z; 4 suitable ([Khovanskii]).
1 1
e log-spirals: (— sin o log?, = cosolog?), F,G >0, ¢,q € N*.
x x

arctan log? - sinlog? x
x%(2 + cosd log z)’ vz (1 + loglog z)
p(T) =T%

2. 1

e Graphs: z — sinlog’ z max. sol. of Euler equation z*y"” + zy’ +y = 0.

), here b(z) = L

x5’

e (log2+



Part II Back to a compact domain

D = D(0,1) or C or D(0,1) etc.
f: D — C transcendental analytic function.
How to prescribe polynomial bounds for Z;(f)?



Part 11 Bézout bound of analytic functions

o Z4(f) < Kq < oo holds for f in any o-minimal structure (of course for
f transcendental...).

e On the other hand Z4(f) may be polynomially bounded in d while f is
not o-minimal (see [Gwozdziewicz-Kurdyka-Parusinski 1999]).

e Even when f is analytic, the asymptotic of Z4(f) is difficult to predict:
for any ¢ €]0, 1], there exists f : D — C analytic such that for a
sequence of degrees d going to oo,

Za(f) > .
(see [Surroca 2002, 2006],[Pila 2004])

loglog maxp,. |f|

e For f entire of finite order := lim sup < o0, for a

r—too logr
certain sequence of degrees going to oo

Za(f) < Cd*>  (best possible asymptotic).



Part 11 Bézout bound of analytic functions
What’s known on the asymptotic of Z;(f)?

e f(z) = ¢e* has a polynomial Bézout bound:
[Tijdeman 1971],

e Elementary functions have polynomial Bézout bounds:
[Khovanskir 1991],

e Entire functions with 0 < lower order < finite order < oo, have
polynomial Bézout bounds:

[Coman & Poletsky 2003, 2007],[Brudnyi 2008],[Boxall & Jones 2015].

e Specific functions like the Riemann ¢ function, the Euler I' function,
have polynomial Bézout bounds:

[Coman & Poletsky 2007],[Masser 2011],[Besson 2011, 2014],[Boxall &
Jones 2013].

e (Compact) solutions of some algebraic differential equations have
polynomial Bézout bounds:

[Binyamini 2016].



Part II Linear families of analytic functions

Notation.
e U: (C,0) — (C™,0) analytic,
e Q1, - ,Qm : (C",0) = (C,0) analytic maps.
For A= (M, ,A\m) € C", let
e Qx(z) =21 MiQi(¥(2) =3 10, vk(N)z", k() linear forms on C™.
e Lii={vo=v1=---=v;=0}, C"DLoDL1D---DL;D---
This sequence stabilizes at the Bautin index b = by, Q,,... .Qm:

Ly_1 D2 Ly=Lypq =---

Remark. A € L, < Vk >0, vx(\) =0.



Part II Linear families of analytic functions

Application.
o n=2¥(2)=(z[(2) Qi=XY?, jpel0,d], m=(d+1)?
d .
then Qa(z2) = ij (2)f7(2), degp; < d.
j=0
Remarks.

e The maximum number (w.r.t. A) of zeroes of @ bounds Z(f).

e Since A € L, <= Vk >0, vip(A\) =0, when f is transcendental A # 0
cannot cancel all vy, therefore L, = {0}.

¢« C" D LoD DLy = {0},
therefore b minimal for m — 1 = d? + 2d.

e But b may be very large!



Part 11 Bautin index
Remarks.

e Ford>1

B

o (b =bg4)q>1 measures the transcendency of f: the faster (b = bg)a>1
goes to oo the less f seems transcendental.

i r; ) = <bo.
.}%Pe%lﬁ)io}#{ZED P(z,f(2)) =0} <b

For a basis (viy, -+ ,i,,) C {vo,--- ,vs} of the space of linear forms
=377 a;hion C" s.t. £, =0, write:

L= Z,uqviq and max |uq| < c||€)|, with [[£(N\)]| = max |-
q [
q=1
Notation. Let ¢ be the minimum of the constant ¢’ w.r.t. all possible
choices of such basis.
Theorem. [Roytwarf & Yomdin 1997]
On D : \ Za(f) < 5blog(4 + 2¢(b + 1)). \




Part II Zeroes through Taylor coeff. and (by)

The bound ‘ Za(f) < 5blog(4 + 2¢(b+ 1)) ‘ comes from zero lemma for
Berstein classes:

h(z) =350 v;z" on D(0, R), for c and N s.t.

Vilos|R? < emax [vi| Y,

#h~1(0) N D(0, R/4) < 5N +logs,,(2 + c).

Remark. In case vg # 0, one can always take N = 0, and we get the
classical Jensen estimate:

#h~1(0) N D(0, R/4) < logs (2 + ———



Part II Zeroes through Taylor coeff. and (by)

Notation.
) 1 .
. =500

e After reduction, the matrix with lines the vy’s is:

1 d
gy —— a; N ¥ AN — ay

1 1 d d
ay — Qp—gq " ay, — Qp4q

e A the absolute value of a nonzero (d* 4 d) x (d* + d) minor of M.
(exists since Ly = {0}!)
Theorem. [C.-Yomdin 2016] On Di:
62(,1+1)2 log(d+1)
A
Consequence. When there exist R, S € R4 [X] s.t.

Za(f) < 5blog(4 + 2(b+ 1)

vdeN, b< R(d) and A>e 5@,

Za(f) is polynomially bounded on D%.



Part II Zeroes through Taylor coeff. and (7))

Notation. When Vk > 0, ax = L% € Q denote he := max{|qol, -, |qe|}
dx

Proposition 1. [C.-Yomdin 2016] For f € Q{z}, if there exist R, S € R[X]
s.t.
ba < R(d) and hy < &5

then Z4(f) is polynomially bounded.

Definition. f is hypertranscendental when f satisfies no algebraic
differential equation.

Notation. For f hypertranscendental,

Nt = m {multoP(z, f(2), f'(2), - - - 7f(d>(z))}

= ax
P€Zq[Xo, -+, Xq]\{0}

Proposition 2. For f € Q{z}, if there exist R, S € R[X] s.t.
na < R(d) and hy < 5"

then f has a polynomial Bézout bound.



Part II Lacunary series / Solutions of linear D.E.

Theorem 1. [C.-Yomdin 2016] Assume f(z) = Zakz"k € C{z}\ C[z],
k=0
with n? < npy < ny, for some q > 2, then

e f is hypertranscendental ([Ostrowski 1920]).
o by <d”.
If furthermore |ag| > eini, for some p > 0, then

* Za(f) < 10(2d)q2(1 + qd? + 5dPIH3).

Theorem 2. (cf also [Binyamini 2016]) Assume f(z) is a solution of an
algebraic differential equation

F9=Qz, f(2),.... f7V(2)), Q € Q[Xy,..., Xd],

with initial conditions in Q. Then f has a polynomial Bézout bound.

Proof. by is polynomially bounded ([Nesterenko 88| or [Gabrielov 99]).
The Taylor coefficients of f are rational and he < 5.



Part 11 Random series

Notation.

e [0,1]=T+¢+ -« TI"IT"" ... I®° =lim I"

n

ol

o f= Zakzk ~ (ak)ken € I

k=0
e 1 the measure on I™ induced by cylinders m,; *(G), G € I"™
pm-measurable, where pu(m, " (G)) := pn(G).

Theorem 3. For p-a.e. f € I, U € R<s[X], Za(f) < U(d).



Part II Application to Q-points of analytic functions

[e<]

Q-Theorem. For f(z) = Z arz", assume one of the following conditions
k=0

1. feQ{z}, 3R, S € R[X] s.t. by < R(d), hy <Y,
2. feQ{z}, IR, S € R[X] s.t. na < R(d), hy < 5D,

3. flz) = Zakz"’“ € R{z}, ni < npy1 < ni, for ¢ > 2, |ax| > e_”zlz, for
k=0
p >0,

4. f is a solution of an algebraic differential equation with rational
coefficients and initial conditions,

5. f is a random series,
then there exists o, 8 > 0, s.t. #L;(Q,T) < alog? T.

Remarks.
e Statement 4 has been obtained in [Binyamini 2016].

e Statement 5 is a consequence of [Boxall & Jones 2013|: ao transcendent
with ‘good’ transcendency measure, such as S-numbers in Mahler’s
classification (a.e. numbers are S-numbers) is enough for
#I5(Q,T) < alog’ T.



Part II Application to Q-points of analytic functions
Q-Theorem. For f(z) = Z arz®, assume one of the following conditions
k=0
1. f€Q{z}, IR, S € R[X] s.t. by < R(d), hy < eV,
. f € Q{Z}5 3R7S € R[X] 5.t Nd < R(d)7 hy < eS(l),

[\]

3. f(z) = Zakz”’“ € R{z}, nj < npy1 < ni, for ¢ > 2, |ax| > e ", for
k=0
p>0,

4. f is a solution of an algebraic differential equation with rational
coefficients and initial conditions,

5. f is a random series,

then there exists a, 8 > 0, s.t. #';(Q,T) < alog? T. (B8 = 8 possible in 5.)

Remark (Siegel-Shidlovskii’s theorem). A combination of comparable
- but finer - conditions on f than 1,2,4, generalizing
Lindemann-Weierstrass theorem (f E-function), gives

z#0,2 € Q = f(2) transcendental.

In particular #I';(Q,T) < 1.



Part II Meromorphic case (P. Villemot)

PhD generalizing Coman & Poletsky to the meromorphic case and
holomorphic case on D.

f € M(D), transcendental, Nevanlinna characteristic:
e T(v, f) := fo% log, |f(ve't)] S—ff +fOV n(oo, ) dT—’
e diamny(F) = inf{z:f.\’:1 ri; E C U D(x, 1)}
Theorem. Assume there exist (A\q), (vq4) 1 with
e log ;’—Z >d
e T(va, f) < d°
e 34, C ST, length(Aq) > e_dl, s.t.
Ya € Ag, 3B, C 7 (a) N D(0, \g), 3C, C f~(c0) N D(0,vy4),

with diamgys(,,00)—#c, (Ba, D(0,va)) > e and p,,(Ba,Ca) > eidi
then

Zdyz(f) < max(d’ (1{)(»,-))1+204+max(o¢,«/,¢s7z)7

where ¢(r) = min{k; A\ > r}



Part II Meromorphic case (P. Villemot)

Theorem. Let f € O(D), transcendental, s.t.

loglog™ M(f,r) loglog™ M(f,r)

A := liminf 1 dp:=1l
T log(1 — ) > L andp I:isll_lp —log(l —r) o
then
‘Vd €N, 7 €[0,1], Za,» < (max(log™ M(f,r),d))***.
Example.
flz)= Zanz", zeD,
n=0

with

lim inf log /J\rn T > 2 and liminf log /J\rn T < 00

n—co log A, — log™ log™ |ax| n—co log A, — log™ log™ |ax|

g=1
For instance, | Ant1 = ¢(An) |, with ¢(n) > n and |a, = e , q>2.




Part II Meromorphic case (P. Villemot)

Example. f € M(C) elliptic (non constant),

3C > 0,Yd e N,r >0, Zg, < Cmax(d,r)>.

Same bound for o (see also Besson) and for ¢ (see also Jones-Thomas for its
Q-points, using the pfaffian structure - no zero lemma in their case) of
Weierstrafs

Example. Let f € M(D) a nonconstant fuchsian function, then

1
r < i cpuwnry ’
et ez, < o (i)




