Zeroes and $\mathbb Q\text{-}\mathrm{points}$ of smooth functions

Meeting ANR FOLIAGE

Georges COMTE

(Grenoble Alpes - Savoie Mont Blanc - UMR CNRS 5127)

8th July 2018

ntroduction

Terminology & Notation

• For
$$x = (x_1, \dots, x_n) \in \mathbb{Q}^n$$
, $x_i = \frac{a_i}{b_i}$ with $a_i \wedge b_i = 1$,

$$\boxed{\operatorname{ht}(x) := \max_i \{|a_i|, |b_i|\},}$$
• $X \subset \mathbb{R}^n$,

$$X(\mathbb{Q},T) := \{x \in X \cap \mathbb{Q}; ht(x) \le T\}$$

• "X has few rational points of height $\leq T$ " means subpolynomial bound:

$$\forall \varepsilon > 0, \exists C_{\varepsilon}, \, \# X(\mathbb{Q}, T) \le C_{\varepsilon} T^{\varepsilon}$$

• "Better bound" means poly-log bound:

$$\#X(\mathbb{Q},T) \le \alpha \log^{\beta} T$$

• Bézout bound:

$$Z_d(X) := \sup_{P \in \mathbb{R}_d[x] \setminus \{0\}} \#(X \cap P^{-1}(0)).$$

Following Bombieri & Pila's approach, showing that a given set X has few rational points amounts:

- Yomdin-Gromov decomposition: For each $k \in \mathbb{N}$ covering X by a finite number of C^k -charts with all derivatives bounded by 1,
- Bézout bound: Showing that $Z_d(X)$ is uniformly bounded with respect to all nonzero polynomials P_d of degree $\leq d$.

Following Binyamini and Novikov's approach: control the number of Weierstraß polydiscs covering X through their size, using Bernstein indices in holomorphic-Noetherian setting or metric entropy measures in the Pfaffian context of \mathbf{R}^{RE} .

Remark. For better bounds one needs to accurately control the number of charts and Z_d (polynomial in d).

For this, following Bombieri & Pila's strategy we can split difficulties in two:

- Take X in a geometric structure where polynomial Bézout bounds are available, and work on the number of C^k-charts. (Binyamini & Novikov's approach for R^{RE}, C.-Miller for noncompact oscillatory "slow" sets).
- 2. Take X given by one convenient chart (e.g. a graph) and work on \mathbb{Z}_d (C.-Yomdin, Villemot).

From now on, X is a graph of a function or a parameterized curve.

Introduction

Notation

- $f: D \to \mathbb{C}$ an analytic function (D: domain $/\mathbb{R}$ or $/\mathbb{C}...$),
- Γ_f the graph of f,

•
$$Z_d(f) := \sup_{P \in \mathcal{P}_d \setminus \{0\}} \# \{ P(z, f(z)) = 0 \} \in \mathbb{N} \cup \{\infty\}.$$

- $Z_d(f)$ is the maximum number of intersection points between Γ_f and algebraic curves of degree $\leq d$.
- In case f is a polynomial, $Z_d(f)$ is polynomially bounded in d (and deg f) when the intersection is transverse.
- $Z_d(f) < \infty$ or Γ_f contains a piece of algebraic curve (of dimension 1).

We assume $\forall d \in \mathbb{N}, Z_d(f) < \infty$, ie f is a transcendental function.

Sub-polynomial bounds

• [Bombieri & Pila 1989]: $f:[0,1] \to \mathbb{R}$ analytic then

 $\forall \varepsilon > 0 \; \exists C_{f,\varepsilon} \; \text{ s.t. } \; \#\Gamma_f(\mathbb{Q},T) \le C_{f,\varepsilon}T^{\varepsilon}.$

• [Pila & Wilkie 2006]: Same result for $X \subset \mathbb{R}^n$ an o-minimal set: $\forall \varepsilon > 0 \exists C_{X,\varepsilon} \text{ s.t. } \# X^{\text{trans}}(\mathbb{Q},T) \leq C_{X,\varepsilon}T^{\varepsilon}.$

 $X^{\text{trans}} := X \setminus X^{\text{alg}},$ $X^{\text{alg}} := \{ x \in X; \exists S \text{ semialgebraic of pure dimension 1, s.t. } x \in S \subset X \}.$

Interlude

Bombieri & Pila's proof

Fix
$$T, d \ge 0, I \subset [0, 1]$$
 and denote $\mu = \frac{(d+1)(d+2)}{2} = \dim(\mathbb{R}_{\le d}[X, Y]).$

- If $\#\Gamma_f(\mathbb{Q}, T) < \mu$, then $\Gamma_f(\mathbb{Q}, T)$ is contained in a single set P = 0, with $P \in \mathbb{R}_{\leq d}[X, Y]$. So we may assume $\#\Gamma_f(\mathbb{Q}, T) \geq \mu$.
- Let $A_1, \ldots, A_\mu \in \Gamma_f(\mathbb{Q}, T), A_i = (a_i, f(a_i)), A_i^{(\alpha, \beta)} = a_i^{\alpha} f^{\beta}(a_i),$

$$M = (A_i^{(\alpha,\beta)})_{i \le \mu, \alpha + \beta \le d}$$

$$\Delta := \det(M).$$

$$|\Delta| \le C_d |I|^{\frac{\mu(\mu-1)}{2}}$$
 (*)

• On the other hand, if $\Delta \neq 0$, then $\prod_{i \leq \mu} |p_i^d q_i^d \Delta| \geq 1$, where p_i, q_i are the denominators of a_i and $f(a_i)$.

$$\implies |\Delta| \ge T^{-2d\mu} \qquad (**)$$

• Conclusion
$$(*) + (**)$$
: $|I| \le C'_d T^{\frac{-4d}{\mu-1}} \Longrightarrow \Delta = 0$

Bombieri-Pila: Proof

- Assume for simplicity $f:[0,1] \to \mathbb{R}$.
- Let $I \subset [0,1], |I| \leq C'_d T^{\frac{-4d}{\mu-1}}$. On needs $N \sim \frac{1}{C'_d} T^{\frac{4d}{\mu-1}}$ intervals I to cover [0,1]. Note that $\nu_d := \frac{4d}{\mu-1} \sim \frac{8}{d} \to 0$ as $d \to \infty$.
- For any choice of $A_1, \ldots, A_\mu \in \Gamma_{f \upharpoonright I}(\mathbb{Q}, T), \, \Delta_{\upharpoonright I} = 0$ thus

 $\operatorname{rank}(M) < \mu$.

Let $A_1, \ldots, A_\mu \in \Gamma_{f \upharpoonright I}(\mathbb{Q}, T)$ realize the maximum rank r for M and let \widetilde{M} a maximal minor in M (the upper left hand corner minor...). Let $(\alpha, \beta), \alpha + \beta \leq d$, an exponent not appearing in \widetilde{M} .

• The non-zero polynomial $P_I(X, Y) \in \mathbb{R}_{\leq d}[X, Y]$

$$P_{I}(X,Y) := \det \begin{pmatrix} X^{\alpha_{1}}Y^{\beta_{1}} \\ & X^{\alpha_{2}}Y^{\beta_{2}} \\ & \vdots \\ & & \vdots \\ a_{1}^{\alpha}f(a_{1})^{\beta} \cdots a_{r}^{\alpha}f(a_{r})^{\beta} & X^{\alpha}Y^{\beta} \end{pmatrix}$$

cancels at any point of $\Gamma_{f \upharpoonright I}(\mathbb{Q}, T)$, as a minor of size r + 1 of M.

Introduction

$\mathbb{Q}\text{-points}$ and Bézout bound

Remark. [Pila 2006, Prop. 2.4]: $\Gamma_f(\mathbb{Q}, T)$ is contained in a certain number of hypersurfaces of \mathbb{R}^2 of degree d, this number being bounded by

$C_{f,d}T^{\nu_d},$

- $C_{f,d}$ depends on d and comes from analytic bounds on $|f^{(p)}|$ (linearly in A, $|f^{(k)}(x)/k!| \leq A^k$).
- for $d = \lfloor \log T \rfloor$, T^{ν_d} and C_d are constant independent of T.

Consequence 1 (Bombieri-Pila's end of proof). For $\varepsilon > 0$ given, find $d := d_{\varepsilon}$ large enough s.t. $\nu_{d_{\varepsilon}} \leq \varepsilon$:

 $\#\Gamma_f(\mathbb{Q},T) \le Q(A,d_{\varepsilon}) \times \mathbb{Z}_{d_{\varepsilon}}(f) \times T^{\varepsilon}.$

Consequence 2 (possible better bound). For $f : [0, 1] \to \mathbb{R}$ analytic, transcendental

 $\#\Gamma_f(\mathbb{Q},T) \le C(A) \times Z_{\lfloor \log T \rfloor}(f).$

In particular when f has a polynomial Bézout bound one gets a better bound

$$\exists \alpha, \beta \text{ s.t. } \#\Gamma_f(\mathbb{Q}, T) \leq \alpha \log^{\beta} T \quad (\text{vs} \quad \forall \varepsilon > 0, \ \#\Gamma_f(\mathbb{Q}, T) \leq \alpha C_{\varepsilon} T^{\varepsilon})$$

Natural directions for better bounds

- 1. Non-compact domain. Find a class of \mathcal{C}^{∞} $f: [a, +\infty[\rightarrow \mathbb{R} \text{ with }$
 - $\forall p \ge 0$, fast enough decay for $|f^{(p)}|$.
 - $\forall d \geq 1, \forall I \subset [a, +\infty[$, polynomially controlled $Z_d(f|_I)$ w.r.t. d and length(I),
- 2. Compact domain. Find analytic functions $f: D \to \mathbb{R}$ with $Z_d(f)$ polynomially bounded in d.

Better bound for $\#\Gamma_f(\mathbb{Q}, T)$

- (oscillatory) functions $f: [a, +\infty[\rightarrow \mathbb{R},$
- more generally for possibly non compact and/or oscillatory curves $\Gamma \subset \mathbb{R}^n$.

Part I

Non compact case: oscillatory graphs and curves

Definition. The \mathcal{C}^{∞} -parametrization $\gamma = (f,g) : [a, +\infty[\to \mathbb{R}^2 \text{ of the curve } \Gamma \subset \mathbb{R}^2 \text{ is slow when}$

1.
$$\exists u \in \mathbb{R}, \forall x, |u - f(x)| \leq b(x) \searrow 0,$$

2. $\forall p \geq 0, \forall x, |\frac{f^{(p)}(x)}{p!}| \leq \varphi_p(x), |\frac{g^{(p)}(x)}{p!}| \leq \varphi_p(x), \text{ where}$
 $\exists \text{ constants } A, B, C, D \text{ s.t. } \forall x, \varphi_p(x) = D\left(Ap^B \frac{\log^C x}{x}\right)^p.$

Remark. Functions satisfying 2 yield a subalgebra of $C^{\infty}([a, +\infty[)$ stable under derivation.

Example. $g := h \circ \log^{\ell}$, where $\ell \ge 1$ and $\exists \alpha, \forall p \ge 0, |h^{(p)}(x)| \le \alpha^{p}$. **Definition.** $\varphi : [a, +\infty[\rightarrow \mathbb{R} \text{ is a height control function} of <math>\gamma$ when

$$\gamma^{-1}(\Gamma(\mathbb{Q},T)) \subset [a,\varphi(T)].$$

Examples. For f slow:

- when $u \in \mathbb{Q}$ and f doesn't take the value u, one can take $\varphi(T) = b^{-1}(\frac{K}{T})$, for some K.
- When $u \notin \mathbb{Q}$, and is not a *U*-number of degree 1 in Mahler's classification, one can take $\varphi(T) = b^{-1}(\frac{1}{T^K})$, for some *K*.

Part I

Q-points of oscillatory curves

Theorem. [C.-Miller 2017] Let γ be a slow parametrization of a transcendental curve Γ , with height control function φ , $T \ge 1$, $d \ge 1$ and

$$Z_{d,A} := \sup_{P \in \mathbb{R}_d[X,Y] \setminus \{0\}} \# P^{-1}(0) \cap \gamma([a,A]),$$

then

$$\#\Gamma(\mathbb{Q},T) \le \alpha \log^{\delta}(T) \times \log^{\nu}(\varphi(T)) \times Z_{\log T,\varphi(T)}.$$

Consequence. When $e^{\varphi(T)}$ and $Z_{d,A}$ are polynomially bounded in T, d, A then

$$\#\Gamma(\mathbb{Q},T) \le \alpha \log^{\beta}(T).$$

Examples. Built on elementary functions composed with \log^{ℓ} \implies Slowness & $\mathbb{Z}_{d,A}$ suitable ([Khovanskiĭ]).

- log-spirals: $(\frac{1}{x^F} \sin \circ \log^{\ell}, \frac{1}{x^G} \cos \circ \log^q), \ F, G > 0, \ \ell, q \in \mathbb{N}^*.$
- $(\log 2 + \frac{\arctan\log^2 x}{x^5(2 + \cos^3 \log x)}, \pi + \frac{\sin\log^2 x}{\sqrt{x}(1 + \log\log x)})$, here $b(x) = \frac{1}{x^5}, \varphi(T) = T^{\frac{1}{5}}$
- Graphs: $x \mapsto \sin \log^{\ell} x$ max. sol. of Euler equation $x^2 y'' + xy' + y = 0$.

D = D(0,1) or \mathbb{C} or $\overline{D}(0,1)$ etc. $f: D \to \mathbb{C}$ transcendental analytic function. How to prescribe polynomial bounds for $Z_d(f)$?

Part II

- $Z_d(f) \leq K_d < \infty$ holds for f in any o-minimal structure (of course for f transcendental...).
- On the other hand $Z_d(f)$ may be polynomially bounded in d while f is not o-minimal (see [Gwoździewicz-Kurdyka-Parusiński 1999]).
- Even when f is analytic, the asymptotic of $Z_d(f)$ is difficult to predict: for any $\zeta \in]0, 1[$, there exists $f : D \to \mathbb{C}$ analytic such that for a sequence of degrees d going to ∞ ,

$$Z_d(f) \ge e^{d^{\zeta}}$$

(see [Surroca 2002, 2006],[Pila 2004])

• For f entire of finite order := $\limsup_{r \to \infty} \frac{\log \log \max_{D_r} |f|}{\log r} < \infty$, for a certain sequence of degrees going to ∞

$$Z_d(f) \leq Cd^2$$
 (best possible asymptotic).

Part II

Bézout bound of analytic functions

What's known on the asymptotic of $Z_d(f)$?

- $f(z) = e^z$ has a polynomial Bézout bound: [Tijdeman 1971],
- Elementary functions have polynomial Bézout bounds: [Khovanskiĭ 1991],
- Entire functions with 0 < lower order ≤ finite order < ∞, have polynomial Bézout bounds: [Coman & Poletsky 2003, 2007],[Brudnyi 2008],[Boxall & Jones 2015].
- Specific functions like the Riemann ζ function, the Euler Γ function, have polynomial Bézout bounds: [Coman & Poletsky 2007],[Masser 2011],[Besson 2011, 2014],[Boxall & Jones 2013].
- (Compact) solutions of some algebraic differential equations have polynomial Bézout bounds: [Binyamini 2016].

Notation.

- $\Psi : (\mathbb{C}, 0) \to (\mathbb{C}^n, 0)$ analytic,
- $Q_1, \dots, Q_m : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ analytic maps.

For $\lambda = (\lambda_1, \cdots, \lambda_m) \in \mathbb{C}^n$, let

• $Q_{\lambda}(z) = \sum_{i=1}^{m} \lambda_i Q_i(\Psi(z)) = \sum_{k=0}^{\infty} v_k(\lambda) z^k$, $v_k(\lambda)$ linear forms on \mathbb{C}^m .

•
$$L_i := \{v_0 = v_1 = \cdots = v_i = 0\}, \ \mathbb{C}^m \supseteq L_0 \supseteq L_1 \supseteq \cdots \supseteq L_i \supseteq \cdots$$

This sequence stabilizes at the Bautin index $b = b_{\Psi,Q_1,\dots,Q_m}$:

$$L_{b-1} \supseteq L_b = L_{b+1} = \cdots$$

Remark. $\lambda \in L_b \iff \forall k \ge 0, v_k(\lambda) = 0.$

Linear families of analytic functions

Application.

•
$$n = 2, \Psi(z) = (z, f(z))$$
 $Q_i = X^j Y^p, \quad j, p \in [[0, d]], \quad m = (d+1)^2$

then
$$Q_{\lambda}(z) = \sum_{j=0}^{d} p_j(z) f^j(z), \ \deg p_j \leq d.$$

Remarks.

- The maximum number (w.r.t. λ) of zeroes of Q_{λ} bounds $Z_d(f)$.
- Since $\lambda \in L_b \iff \forall k \ge 0$, $v_k(\lambda) = 0$, when f is transcendental $\lambda \ne 0$ cannot cancel all v_k , therefore $L_b = \{0\}$.
- $\mathbb{C}^m \supseteq L_0 \supseteq \cdots \supseteq L_b = \{0\},$ therefore b minimal for $m - 1 = d^2 + 2d$.
- But *b* may be very large!

Part II

Part II

Bautin index

Remarks.

• For $d \ge 1$

$$b = \max_{P \in \mathbb{C}_d \setminus \{0\}} \#\{ \operatorname{mult}_0 P(z, f(z)) \}$$

- $(b = b_d)_{d \ge 1}$ measures the transcendency of f: the faster $(b = b_d)_{d \ge 1}$ goes to ∞ the less f seems transcendental.
- $\lim_{r \to 0} \max_{P \in \mathbb{C}_d \setminus \{0\}} \# \{ z \in D_r; \ P(z, f(z)) = 0 \} \le b.$

For a basis $(v_{i_1}, \cdots, v_{i_m}) \subset \{v_0, \cdots, v_b\}$ of the space of linear forms $\ell = \sum_{i=1}^m \alpha_i \lambda_i$ on \mathbb{C}^m s.t. $\ell_{|L_b} \equiv 0$, write:

$$\ell = \sum_{q=1}^{m} \mu_q v_{i_q} \text{ and } \max_q |\mu_q| \le c' ||\ell||, \text{ with } ||\ell(\lambda)|| = \max_i |\alpha_i|.$$

Notation. Let c be the minimum of the constant c' w.r.t. all possible choices of such basis.

Theorem. [Roytwarf & Yomdin 1997]

On
$$D_{\frac{1}{4}}$$
: $Z_d(f) \le 5b \log(4 + 2c(b+1)).$

Part II Zeroes through Taylor coeff. and (b_d)

The bound $Z_d(f) \leq 5b \log(4 + 2c(b+1))$ comes from zero lemma for Berstein classes:

 $h(z) = \sum_{i \ge 0} v_i z^i$ on $\overline{D}(0, R)$, for c and N s.t.

 $\forall j | v_j | R^j \le c \max_{i \le N} | v_i | R^i,$

$$#h^{-1}(0) \cap D(0, R/4) \le 5N + \log_{5/4}(2+c).$$

Remark. In case $v_0 \neq 0$, one can always take N = 0, and we get the classical Jensen estimate:

$$#h^{-1}(0) \cap D(0, R/4) \le \log_{5/4}(2 + \frac{M(h, R)}{|v_0|}).$$

Part IIZeroes through Taylor coeff. and (b_d) Notation.

•
$$a_i^j := \frac{1}{i!} (f^j)^{(i)}(0)$$

• After reduction, the matrix with lines the v_k 's is:

$$M = \begin{pmatrix} a_{d+1}^{1} & --- & a_{1}^{1} & \cdots & a_{d+1}^{d} & --- & a_{1}^{d} \\ | & | & | & | & | & | \\ a_{b}^{1} & --- & a_{b-d}^{1} & \cdots & a_{b}^{d} & --- & a_{b-d}^{d} \end{pmatrix}$$
(1)

• Δ the absolute value of a nonzero $(d^2 + d) \times (d^2 + d)$ minor of M. (exists since $L_b = \{0\}!$)

Theorem. [C.-Yomdin 2016] On $D_{\frac{1}{4}}$:

$$\frac{Z_d(f)}{\Delta} \le 5b\log(4+2(b+1))\frac{e^{2(d+1)^2\log(d+1)}}{\Delta}).$$

Consequence. When there exist $R, S \in \mathbb{R}_+[X]$ s.t.

$$\forall d \in \mathbb{N}, \ b \leq R(d) \ and \ \Delta \geq e^{-S(d)},$$

 $Z_d(f)$ is polynomially bounded on $D_{\frac{1}{4}}$.

Part II Zeroes through Taylor coeff. and (η_d)

Notation. When $\forall k \geq 0$, $a_k = \frac{p_k}{q_k} \in \mathbb{Q}$ denote $h_\ell := \max\{|q_0|, \cdots, |q_\ell|\}$. **Proposition 1.** [C.-Yomdin 2016] For $f \in \mathbb{Q}\{z\}$, if there exist $R, S \in \mathbb{R}[X]$ s.t.

$$b_d \leq R(d)$$
 and $h_\ell \leq e^{S(\ell)}$

then $Z_d(f)$ is polynomially bounded.

Definition. f is hypertranscendental when f satisfies no algebraic differential equation.

Notation. For f hypertranscendental,

$$\eta_d := \max_{P \in \mathbb{Z}_d[X_0, \cdots, X_d] \setminus \{0\}} \{ \operatorname{mult}_0 P(z, f(z), f'(z), \cdots, f^{(d)}(z)) \}$$

Proposition 2. For $f \in \mathbb{Q}\{z\}$, if there exist $R, S \in \mathbb{R}[X]$ s.t.

$$\eta_d \leq R(d) \text{ and } h_\ell \leq e^{S(\ell)}$$

then f has a polynomial Bézout bound.

Theorem 1. [C.-Yomdin 2016] Assume $f(z) = \sum_{k=0}^{\infty} a_k z^{n_k} \in \mathbb{C}\{z\} \setminus \mathbb{C}[z],$

with $n_k^2 \le n_{k+1} \le n_k^q$, for some q > 2, then

- f is hypertranscendental ([Ostrowski 1920]).
- $b_d \leq d^{q^2}$. If furthermore $|a_k| \geq e^{-n_k^p}$, for some p > 0, then

•
$$Z_d(f) \le 10(2d)^{q^2}(1+qd^2+5d^{pq+3}).$$

Theorem 2. (cf also [Binyamini 2016]) Assume f(z) is a solution of an algebraic differential equation

$$f^{(d)} = Q(z, f(z), \dots, f^{(d-1)}(z)), \ Q \in \mathbb{Q}[X_1, \dots, X_d],$$

with initial conditions in \mathbb{Q} . Then f has a polynomial Bézout bound. **Proof.** b_d is polynomially bounded ([Nesterenko 88] or [Gabrielov 99]). The Taylor coefficients of f are rational and $h_{\ell} \leq e^{S(\ell)}$.

Notation.

~~

•
$$[0,1] = I \leftarrow \dots \leftarrow I^n \leftarrow I^{n+1} \leftarrow \dots \leftarrow I^\infty = \varprojlim_{n \in \mathbb{N}} I^n$$

•
$$f = \sum_{k=0}^{\infty} a_k z^k \sim (a_k)_{k \in \mathbb{N}} \in I^{\infty}$$

• μ the measure on I^{∞} induced by cylinders $\pi_n^{-1}(G), G \in I^n$ μ_n -measurable, where $\mu(\pi_n^{-1}(G)) := \mu_n(G)$.

Theorem 3. For μ -a.e. $f \in I^{\infty}$, $\exists U \in \mathbb{R}_{\leq 8}[X], Z_d(f) \leq U(d)$.

Part II Application to \mathbb{Q} -points of analytic functions $_{\infty}$

Q-Theorem. For $f(z) = \sum_{k=0}^{\infty} a_k z^k$, assume one of the following conditions

1. $f \in \mathbb{Q}\{z\}, \exists R, S \in \mathbb{R}[X] \text{ s.t. } b_d \leq R(d), h_l \leq e^{S(l)},$

2.
$$f \in \mathbb{Q}\{z\}, \exists R, S \in \mathbb{R}[X] \text{ s.t. } \eta_d \leq R(d), \ h_l \leq e^{S(l)},$$

- 3. $f(z) = \sum_{k=0}^{\infty} a_k z^{n_k} \in \mathbb{R}\{z\}, n_k^2 < n_{k+1} \le n_k^q$, for q > 2, $|a_k| \ge e^{-n_k^p}$, for p > 0,
- 4. f is a solution of an algebraic differential equation with rational coefficients and initial conditions,
- 5. f is a random series,

then there exists $\alpha, \beta > 0$, s.t. $\#\Gamma_f(\mathbb{Q}, T) \leq \alpha \log^{\beta} T$.

Remarks.

- Statement 4 has been obtained in [Binyamini 2016].
- Statement 5 is a consequence of [Boxall & Jones 2013]: a_0 transcendent with 'good' transcendency measure, such as S-numbers in Mahler's classification (a.e. numbers are S-numbers) is enough for $\#\Gamma_f(\mathbb{Q},T) \leq \alpha \log^{\beta} T$.

Part II Application to \mathbb{Q} -points of analytic functions

Q-Theorem. For $f(z) = \sum_{k=0}^{\infty} a_k z^k$, assume one of the following conditions

1.
$$f \in \mathbb{Q}\{z\}, \exists R, S \in \mathbb{R}[X] \text{ s.t. } b_d \leq R(d), \ h_l \leq e^{S(l)},$$

2. $f \in \mathbb{Q}\{z\}, \exists R, S \in \mathbb{R}[X] \text{ s.t. } \eta_d \leq R(d), \ h_l \leq e^{S(l)},$
3. $f(z) = \sum_{k=0}^{\infty} a_k z^{n_k} \in \mathbb{R}\{z\}, \ n_k^2 < n_{k+1} \leq n_k^q, \text{ for } q > 2, \ |a_k| \geq e^{-n_k^p}, \text{ for } p > 0,$

- 4. *f* is a solution of an algebraic differential equation with rational coefficients and initial conditions,
- 5. f is a random series,

then there exists $\alpha, \beta > 0$, s.t. $\#\Gamma_f(\mathbb{Q}, T) \leq \alpha \log^{\beta} T$. ($\beta = 8$ possible in 5.)

Remark (Siegel-Shidlovskii's theorem). A combination of comparable - but finer - conditions on *f* than 1, 2, 4, generalizing Lindemann-Weierstrass theorem (f *E*-function), gives

$$z \neq 0, z \in \overline{\mathbb{Q}} \Longrightarrow f(z)$$
 transcendental.

In particular $\#\Gamma_f(\mathbb{Q}, T) \leq 1$.

Part II Meromorphic case (P. Villemot)

PhD generalizing Coman & Poletsky to the meromorphic case and holomorphic case on $\mathbb{D}.$

 $f \in \mathcal{M}(\mathbb{D})$, transcendental, Nevanlinna characteristic:

- $T(\nu, f) := \int_0^{2\pi} \log_+ |f(\nu e^{it})| \frac{\mathrm{d}t}{2\pi} + \int_0^{\nu} n(\infty, r) \frac{\mathrm{d}r}{r}.$
- diam_N(E) = inf{ $\sum_{i=1}^{N} r_i; E \subset \bigcup_{i=1}^{N} D(*, r_i)$ }

Theorem. Assume there exist (λ_d) , $(\nu_d) \nearrow 1$ with

- $\log \frac{\nu_d}{\lambda_d} \ge d^{-\alpha}$,
- $T(\nu_d, f) \leq d^{\beta}$
- $\exists A_d \subset S^1$, length $(A_d) \ge e^{-d^l}$, s.t.

 $\forall a \in A_d, \ \exists B_a \subset f^{-1}(a) \cap D(0,\lambda_d), \ \exists C_a \subset f^{-1}(\infty) \cap D(0,\nu_d),$ with diam_{d+ $\bar{n}(\nu_d,\infty)-\#C_a(B_a,D(0,\nu_d)) \ge e^{-d^{\gamma}}$ and $p_{\nu_d}(B_a,C_a) \ge e^{-d^{\delta}},$ then}

$$Z_{d,z}(f) \le \max(d,\phi(r))^{1+2\alpha+\max(\alpha,\gamma,\delta,l)},$$

where $\phi(r) = \min\{k; \lambda_k \ge r\}$

Part II Meromorphic case (P. Villemot)

Theorem. Let $f \in \mathcal{O}(\mathbb{D})$, transcendental, s.t.

$$\lambda := \liminf_{r \to 1^{-}} \frac{\log \log^{+} M(f, r)}{-\log(1 - r)} > 1, \text{ and } \rho := \limsup_{r \to 1^{-}} \frac{\log \log^{+} M(f, r)}{-\log(1 - r)} < \infty,$$

then

$$\forall d \in \mathbb{N}, r \in [0, 1[, Z_{d,r} \le (\max(\log^+ M(f, r), d))^{\alpha_{\lambda, \rho}}.$$

Example.

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \ z \in \mathbb{D},$$

with

$$\liminf_{n \to \infty} \frac{\log \lambda_n}{\log \lambda_n - \log^+ \log^+ |a_n|} > 2 \text{ and } \liminf_{n \to \infty} \frac{\log \lambda_n}{\log \lambda_n - \log^+ \log^+ |a_n|} < \infty$$

For instance, $\left[\lambda_{n+1} = \phi(\lambda_n)\right]$, with $\phi(n) > n$ and $\left[a_n = e^{\lambda_n^{\frac{q-1}{q}}}, q > 2\right]$

Example. $f \in \mathcal{M}(\mathbb{C})$ elliptic (non constant),

$$\exists C > 0, \forall d \in \mathbb{N}, r > 0, \ Z_{d,r} \le C \max(d,r)^2.$$

Same bound for σ (see also Besson) and for ζ (see also Jones-Thomas for its \mathbb{Q} -points, using the pfaffian structure - no zero lemma in their case) of Weierstraß

Example. Let $f \in \mathcal{M}(\mathbb{D})$ a nonconstant fuchsian function, then

$$\forall d \in \mathbb{N}, \forall r \in [0, 1[, Z_{d,r} \le C \max\left(d^4, \frac{1}{(1-r)^4}\right).$$