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Introduction Terminology & Notation
• For x = (x1, . . . , xn) ∈ Qn, xi =

ai
bi

with ai ∧ bi = 1,

ht(x) := max
i
{|ai|, |bi|},

• X ⊂ Rn,
X(Q, T ) := {x ∈ X ∩Q; ht(x) ≤ T}

• “X has few rational points of height ≤ T" means subpolynomial bound:

∀ε > 0,∃Cε, #X(Q, T ) ≤ CεT ε

• “Better bound" means poly-log bound:

#X(Q, T ) ≤ α logβ T

• Bézout bound:

Zd(X) := sup
P∈Rd[x]\{0}

#(X ∩ P−1(0)).



Introduction Strategies

Following Bombieri & Pila’s approach, showing that a given set X has few
rational points amounts:

• Yomdin-Gromov decomposition: For each k ∈ N covering X by a finite
number of Ck-charts with all derivatives bounded by 1,

• Bézout bound: Showing that Zd(X) is uniformly bounded with respect
to all nonzero polynomials Pd of degree ≤ d.

Following Binyamini and Novikov’s approach: control the number of
Weierstraß polydiscs covering X through their size, using Bernstein indices
in holomorphic-Noetherian setting or metric entropy measures in the
Pfaffian context of RRE.



Introduction Strategies

Remark. For better bounds one needs to accurately control the number of
charts and Zd (polynomial in d).

For this, following Bombieri & Pila’s strategy we can split difficulties in two:

1. Take X in a geometric structure where polynomial Bézout bounds are
available, and work on the number of Ck-charts.
(Binyamini & Novikov’s approach for RRE, C.-Miller for noncompact
oscillatory “slow" sets).

2. Take X given by one convenient chart (e.g. a graph) and work on Zd
(C.-Yomdin, Villemot).

From now on, X is a graph of a function or a parameterized curve.



Introduction Notation

• f : D → C an analytic function (D: domain /R or /C...),

• Γf the graph of f ,

• Zd(f) := sup
P∈Pd\{0}

#{P (z, f(z)) = 0} ∈ N ∪ {∞}.

• Zd(f) is the maximum number of intersection points between Γf and
algebraic curves of degree ≤ d.

• In case f is a polynomial, Zd(f) is polynomially bounded in d (and
deg f) when the intersection is transverse.

• Zd(f) <∞ or Γf contains a piece of algebraic curve (of dimension 1).

We assume ∀d ∈ N, Zd(f) <∞, ie f is a transcendental function.



Introduction B&P and P&W results

Sub-polynomial bounds

• [Bombieri & Pila 1989]: f : [0, 1]→ R analytic then

∀ε > 0 ∃Cf,ε s.t. #Γf (Q, T ) ≤ Cf,εT ε.

• [Pila & Wilkie 2006]: Same result for X ⊂ Rn an o-minimal set:

∀ε > 0 ∃CX,ε s.t. #Xtrans(Q, T ) ≤ CX,εT ε.

Xtrans := X \Xalg,
Xalg := {x ∈ X; ∃S semialgebraic of pure dimension 1, s.t. x ∈ S ⊂ X}.



Interlude Bombieri & Pila’s proof

Fix T, d ≥ 0, I ⊂ [0, 1] and denote µ =
(d+ 1)(d+ 2)

2
= dim(R≤d[X,Y ]).

• If #Γf (Q, T ) < µ , then Γf (Q, T ) is contained in a single set P = 0,
with P ∈ R≤d[X,Y ]. So we may assume #Γf (Q, T ) ≥ µ.

• Let A1, . . . , Aµ ∈ Γf (Q, T ), Ai = (ai, f(ai)), A(α,β)
i = aαi f

β(ai),

M = (A
(α,β)
i )i≤µ,α+β≤d,

∆ := det(M).

• |∆| ≤ Cd|I|
µ(µ−1)

2 (∗)
• On the other hand, if ∆ 6= 0, then

∏
i≤µ |p

d
i q
d
i ∆| ≥ 1, where pi, qi are

the denominators of ai and f(ai).

=⇒ |∆| ≥ T−2dµ (∗∗)

• Conclusion (∗) + (∗∗): |I| ≤ C′dT
−4d
µ−1 =⇒ ∆ = 0.



Bombieri-Pila: Proof
• Assume for simplicity f : [0, 1]→ R.

• Let I ⊂ [0, 1], |I| ≤ C′dT
−4d
µ−1 . On needs N ∼ 1

C′d
T

4d
µ−1 intervals I to

cover [0, 1]. Note that νd := 4d
µ−1
∼ 8

d
→ 0 as d→∞.

• For any choice of A1, . . . , Aµ ∈ Γf�I(Q, T ), ∆�I = 0 thus

rank(M) < µ.

Let A1, . . . , Aµ ∈ Γf�I(Q, T ) realize the maximum rank r for M and
let M̃ a maximal minor in M (the upper left hand corner minor...).
Let (α, β), α+ β ≤ d, an exponent not appearing in M̃ .

• The non-zero polynomial PI(X,Y ) ∈ R≤d[X,Y ]

PI(X,Y ) := det


M̃

Xα1Y β1

Xα2Y β2

...
XαrY βr

aα1 f(a1)β · · · aαr f(ar)
β XαY β


cancels at any point of Γf�I(Q, T ), as a minor of size r + 1 of M .



Introduction Q-points and Bézout bound
Remark. [Pila 2006, Prop. 2.4]: Γf (Q, T ) is contained in a certain number
of hypersurfaces of R2 of degree d, this number being bounded by

Cf,dT
νd ,

• Cf,d depends on d and comes from analytic bounds on |f (p)| (linearly
in A, |f (k)(x)/k!| ≤ Ak).

• for d = blog T c, T νd and Cd are constant independent of T .

Consequence 1 (Bombieri-Pila’s end of proof).
For ε > 0 given, find d := dε large enough s.t. νdε ≤ ε:

#Γf (Q, T ) ≤ Q(A, dε)× Zdε(f)× T ε. �

Consequence 2 (possible better bound). For f : [0, 1]→ R analytic,
transcendental

#Γf (Q, T ) ≤ C(A)× Zblog Tc(f).

In particular when f has a polynomial Bézout bound one gets a better
bound

∃α, β s.t. #Γf (Q, T ) ≤ α logβ T (vs ∀ε > 0, #Γf (Q, T ) ≤ αCεT ε)



Introduction Q-points and Bézout bound

Natural directions for better bounds

1. Non-compact domain. Find a class of C∞ f : [a,+∞[→ R with

• ∀p ≥ 0, fast enough decay for |f (p)|.

• ∀d ≥ 1, ∀I ⊂ [a,+∞[, polynomially controlled Zd(f|I) w.r.t. d and
length(I),

2. Compact domain. Find analytic functions f : D → R with Zd(f)
polynomially bounded in d.



Part I Non compact case: oscillatory graphs and curves

Better bound for #Γf (Q, T )

• (oscillatory) functions f : [a,+∞[→ R,
• more generally for possibly non compact and/or oscillatory curves

Γ ⊂ Rn.



Part I Non compact case: oscillatory graphs and curves
Definition. The C∞-parametrization γ = (f, g) : [a,+∞[→ R2 of the curve
Γ ⊂ R2 is slow when
1. ∃u ∈ R, ∀x, |u− f(x)| ≤ b(x)↘ 0,

2. ∀p ≥ 0, ∀x, |f
(p)(x)

p!
| ≤ ϕp(x), |g

(p)(x)

p!
| ≤ ϕp(x), where

∃ constants A,B,C,D s.t. ∀x, ϕp(x) = D
(
ApB

logC x

x

)p
.

Remark. Functions satisfying 2 yield a subalgebra of C∞([a,+∞[) stable
under derivation.
Example. g := h ◦ log`, where ` ≥ 1 and ∃α,∀p ≥ 0, |h(p)(x)| ≤ αp.
Definition. ϕ : [a,+∞[→ R is a height control function of γ when

γ−1(Γ(Q, T )) ⊂ [a, ϕ(T )].

Examples. For f slow:
• when u ∈ Q and f doesn’t take the value u, one can take

ϕ(T ) = b−1(
K

T
), for some K.

• When u 6∈ Q, and is not a U -number of degree 1 in Mahler’s

classification, one can take ϕ(T ) = b−1(
1

TK
), for some K.



Part I Q-points of oscillatory curves
Theorem. [C.-Miller 2017] Let γ be a slow parametrization of a
transcendental curve Γ, with height control function ϕ, T ≥ 1, d ≥ 1 and

Zd,A := sup
P∈Rd[X,Y ]\{0}

#P−1(0) ∩ γ([a,A]),

then
#Γ(Q, T ) ≤ α logδ(T )× logν(ϕ(T ))× Zlog T,ϕ(T ).

Consequence. When eϕ(T ) and Zd,A are polynomially bounded in T, d,A
then

#Γ(Q, T ) ≤ α logβ(T ).

Examples. Built on elementary functions composed with log`

=⇒ Slowness & Zd,A suitable ([Khovanskĭı]).

• log-spirals: (
1

xF
sin ◦ log`,

1

xG
cos ◦ logq), F,G > 0, `, q ∈ N∗.

• (log 2 +
arctan log2 x

x5(2 + cos3 log x)
, π +

sin log2 x√
x(1 + log log x)

), here b(x) =
1

x5
,

ϕ(T ) = T
1
5

• Graphs: x 7→ sin log` x max. sol. of Euler equation x2y′′+ xy′+ y = 0.



Part II Back to a compact domain

D = D(0, 1) or C or D̄(0, 1) etc.
f : D → C transcendental analytic function.

How to prescribe polynomial bounds for Zd(f)?



Part II Bézout bound of analytic functions

• Zd(f) ≤ Kd <∞ holds for f in any o-minimal structure (of course for
f transcendental...).

• On the other hand Zd(f) may be polynomially bounded in d while f is
not o-minimal (see [Gwoździewicz-Kurdyka-Parusiński 1999]).

• Even when f is analytic, the asymptotic of Zd(f) is difficult to predict:
for any ζ ∈]0, 1[, there exists f : D → C analytic such that for a
sequence of degrees d going to ∞,

Zd(f) ≥ ed
ζ

.

(see [Surroca 2002, 2006],[Pila 2004])

• For f entire of finite order := lim sup
r→∞

log log maxDr |f |
log r

<∞, for a

certain sequence of degrees going to ∞

Zd(f) ≤ Cd2 (best possible asymptotic).



Part II Bézout bound of analytic functions
What’s known on the asymptotic of Zd(f)?

• f(z) = ez has a polynomial Bézout bound:
[Tijdeman 1971],

• Elementary functions have polynomial Bézout bounds:
[Khovanskĭı 1991],

• Entire functions with 0 < lower order ≤ finite order <∞, have
polynomial Bézout bounds:
[Coman & Poletsky 2003, 2007],[Brudnyi 2008],[Boxall & Jones 2015].

• Specific functions like the Riemann ζ function, the Euler Γ function,
have polynomial Bézout bounds:
[Coman & Poletsky 2007],[Masser 2011],[Besson 2011, 2014],[Boxall &
Jones 2013].

• (Compact) solutions of some algebraic differential equations have
polynomial Bézout bounds:
[Binyamini 2016].



Part II Linear families of analytic functions

Notation.
• Ψ : (C, 0)→ (Cn, 0) analytic,
• Q1, · · · , Qm : (Cn, 0)→ (C, 0) analytic maps.

For λ = (λ1, · · · , λm) ∈ Cn, let

• Qλ(z) =
∑m
i=1 λiQi(Ψ(z)) =

∑∞
k=0 vk(λ)zk, vk(λ) linear forms on Cm.

• Li := {v0 = v1 = · · · = vi = 0}, Cm ⊇ L0 ⊇ L1 ⊇ · · · ⊇ Li ⊇ · · ·

This sequence stabilizes at the Bautin index b = bΨ,Q1,··· ,Qm :

Lb−1 ) Lb = Lb+1 = · · ·

Remark. λ ∈ Lb ⇐⇒ ∀k ≥ 0, vk(λ) = 0.



Part II Linear families of analytic functions

Application.

• n = 2, Ψ(z) = (z, f(z)) Qi = XjY p, j, p ∈ J0, dK, m = (d+ 1)2,

then Qλ(z) =

d∑
j=0

pj(z)f
j(z), deg pj ≤ d.

Remarks.
• The maximum number (w.r.t. λ) of zeroes of Qλ bounds Zd(f).
• Since λ ∈ Lb ⇐⇒ ∀k ≥ 0, vk(λ) = 0, when f is transcendental λ 6= 0
cannot cancel all vk, therefore Lb = {0}.

• Cm ⊇ L0 ⊇ · · · ⊇ Lb = {0},
therefore b minimal for m− 1 = d2 + 2d.

• But b may be very large!



Part II Bautin index
Remarks.
• For d ≥ 1

b = max
P∈Cd\{0}

#{mult0P (z, f(z))}

• (b = bd)d≥1 measures the transcendency of f : the faster (b = bd)d≥1

goes to ∞ the less f seems transcendental.
• lim
r→0

max
P∈Cd\{0}

#{z ∈ Dr; P (z, f(z)) = 0} ≤ b.

For a basis (vi1 , · · · , vim) ⊂ {v0, · · · , vb} of the space of linear forms
` =

∑m
i=1 αiλi on Cm s.t. `|Lb ≡ 0, write:

` =

m∑
q=1

µqviq and max
q
|µq| ≤ c′‖`‖, with ‖`(λ)‖ = max

i
|αi|.

Notation. Let c be the minimum of the constant c′ w.r.t. all possible
choices of such basis.
Theorem. [Roytwarf & Yomdin 1997]

On D 1
4
: Zd(f) ≤ 5b log(4 + 2c(b+ 1)).



Part II Zeroes through Taylor coeff. and (bd)

The bound Zd(f) ≤ 5b log(4 + 2c(b+ 1)) comes from zero lemma for
Berstein classes:

h(z) =
∑
i≥0 viz

i on D̄(0, R), for c and N s.t.

∀j|vj |Rj ≤ cmax
i≤N
|vi|Ri,

#h−1(0) ∩D(0, R/4) ≤ 5N + log5/4(2 + c).

Remark. In case v0 6= 0, one can always take N = 0, and we get the
classical Jensen estimate:

#h−1(0) ∩D(0, R/4) ≤ log5/4(2 +
M(h,R)

|v0|
).



Part II Zeroes through Taylor coeff. and (bd)
Notation.
• aji :=

1

i!
(f j)(i)(0)

• After reduction, the matrix with lines the vk’s is:

M =


a1
d+1 a1

1 · · · add+1 ad1

a1
b a1

b−d · · · adb adb−d

 (1)

• ∆ the absolute value of a nonzero (d2 + d)× (d2 + d) minor of M.
(exists since Lb = {0}!)

Theorem. [C.-Yomdin 2016] On D 1
4
:

Zd(f) ≤ 5b log(4 + 2(b+ 1)
e2(d+1)2 log(d+1)

∆
).

Consequence. When there exist R,S ∈ R+[X] s.t.

∀d ∈ N, b ≤ R(d) and ∆ ≥ e−S(d),

Zd(f) is polynomially bounded on D 1
4
.



Part II Zeroes through Taylor coeff. and (ηd)

Notation. When ∀k ≥ 0, ak =
pk
qk
∈ Q denote h` := max{|q0|, · · · , |q`|}.

Proposition 1. [C.-Yomdin 2016] For f ∈ Q{z}, if there exist R,S ∈ R[X]
s.t.

bd ≤ R(d) and h` ≤ eS(`)

then Zd(f) is polynomially bounded.

Definition. f is hypertranscendental when f satisfies no algebraic
differential equation.
Notation. For f hypertranscendental,

ηd : = max
P∈Zd[X0,··· ,Xd]\{0}

{mult0P (z, f(z), f ′(z), · · · , f (d)(z))}

Proposition 2. For f ∈ Q{z}, if there exist R,S ∈ R[X] s.t.

ηd ≤ R(d) and h` ≤ eS(`)

then f has a polynomial Bézout bound.



Part II Lacunary series / Solutions of linear D.E.

Theorem 1. [C.-Yomdin 2016] Assume f(z) =
∞∑
k=0

akz
nk ∈ C{z} \ C[z],

with n2
k ≤ nk+1 ≤ nqk, for some q > 2, then

• f is hypertranscendental ([Ostrowski 1920]).

• bd ≤ dq
2

.
If furthermore |ak| ≥ e−n

p
k , for some p > 0, then

• Zd(f) ≤ 10(2d)q
2

(1 + qd2 + 5dpq+3).

Theorem 2. (cf also [Binyamini 2016]) Assume f(z) is a solution of an
algebraic differential equation

f (d) = Q(z, f(z), . . . , f (d−1)(z)), Q ∈ Q[X1, . . . , Xd],

with initial conditions in Q. Then f has a polynomial Bézout bound.
Proof. bd is polynomially bounded ([Nesterenko 88] or [Gabrielov 99]).
The Taylor coefficients of f are rational and h` ≤ eS(`).



Part II Random series

Notation.

• [0, 1] = I ← · · · ← In ← In+1 ← · · · ← I∞ = lim←−
n∈N

In

• f =

∞∑
k=0

akz
k ∼ (ak)k∈N ∈ I∞

• µ the measure on I∞ induced by cylinders π−1
n (G), G ∈ In

µn-measurable, where µ(π−1
n (G)) := µn(G).

Theorem 3. For µ-a.e. f ∈ I∞, ∃U ∈ R≤8[X], Zd(f) ≤ U(d).



Part II Application to Q-points of analytic functions

Q-Theorem. For f(z) =
∞∑
k=0

akz
k, assume one of the following conditions

1. f ∈ Q{z}, ∃R,S ∈ R[X] s.t. bd ≤ R(d), hl ≤ eS(l),
2. f ∈ Q{z}, ∃R,S ∈ R[X] s.t. ηd ≤ R(d), hl ≤ eS(l),

3. f(z) =
∞∑
k=0

akz
nk ∈ R{z}, n2

k < nk+1 ≤ nqk, for q > 2, |ak| ≥ e−n
p
k , for

p > 0,
4. f is a solution of an algebraic differential equation with rational

coefficients and initial conditions,
5. f is a random series,

then there exists α, β > 0, s.t. #Γf (Q, T ) ≤ α logβ T .

Remarks.
• Statement 4 has been obtained in [Binyamini 2016].
• Statement 5 is a consequence of [Boxall & Jones 2013]: a0 transcendent
with ‘good’ transcendency measure, such as S-numbers in Mahler’s
classification (a.e. numbers are S-numbers) is enough for
#Γf (Q, T ) ≤ α logβ T .



Part II Application to Q-points of analytic functions

Q-Theorem. For f(z) =
∞∑
k=0

akz
k, assume one of the following conditions

1. f ∈ Q{z}, ∃R,S ∈ R[X] s.t. bd ≤ R(d), hl ≤ eS(l),
2. f ∈ Q{z}, ∃R,S ∈ R[X] s.t. ηd ≤ R(d), hl ≤ eS(l),

3. f(z) =
∞∑
k=0

akz
nk ∈ R{z}, n2

k < nk+1 ≤ nqk, for q > 2, |ak| ≥ e−n
p
k , for

p > 0,
4. f is a solution of an algebraic differential equation with rational

coefficients and initial conditions,
5. f is a random series,

then there exists α, β > 0, s.t. #Γf (Q, T ) ≤ α logβ T . (β = 8 possible in 5.)

Remark (Siegel-Shidlovskii’s theorem). A combination of comparable
- but finer - conditions on f than 1, 2, 4, generalizing
Lindemann-Weierstrass theorem (f E-function), gives

z 6= 0, z ∈ Q̄ =⇒ f(z) transcendental.

In particular #Γf (Q, T ) ≤ 1.



Part II Meromorphic case (P. Villemot)

PhD generalizing Coman & Poletsky to the meromorphic case and
holomorphic case on D.

f ∈M(D), transcendental, Nevanlinna characteristic:
• T (ν, f) :=

´ 2π

0
log+ |f(νeit)| dt

2π
+
´ ν

0
n(∞, r) dr

r
.

• diamN (E) = inf{
∑N
i=1 ri;E ⊂ ∪

N
i=1D(∗, ri)}

Theorem. Assume there exist (λd), (νd) ↗ 1 with
• log νd

λd
≥ d−α,

• T (νd, f) ≤ dβ

• ∃Ad ⊂ S1, length(Ad) ≥ e−d
l

, s.t.

∀a ∈ Ad, ∃Ba ⊂ f−1(a) ∩D(0, λd), ∃Ca ⊂ f−1(∞) ∩D(0, νd),
with diamd+n̄(νd,∞)−#Ca(Ba, D(0, νd)) ≥ e−d

γ

and pνd(Ba, Ca) ≥ e−d
δ

,
then

Zd,z(f) ≤ max(d, φ(r))1+2α+max(α,γ,δ,l),

where φ(r) = min{k;λk ≥ r}



Part II Meromorphic case (P. Villemot)

Theorem. Let f ∈ O(D), transcendental, s.t.

λ := lim inf
r→1−

log log+ M(f, r)

− log(1− r) > 1, and ρ := lim sup
r→1−

log log+ M(f, r)

− log(1− r) <∞,

then
∀d ∈ N, r ∈ [0, 1[, Zd,r ≤ (max(log+ M(f, r), d))αλ,ρ .

Example.

f(z) =
∞∑
n=0

anz
n, z ∈ D,

with

lim inf
n→∞

log λn

log λn − log+ log+ |an|
> 2 and lim inf

n→∞

log λn

log λn − log+ log+ |an|
<∞

For instance, λn+1 = φ(λn) , with φ(n) > n and an = eλ
q−1
q

n , q > 2.



Part II Meromorphic case (P. Villemot)

Example. f ∈M(C) elliptic (non constant),

∃C > 0, ∀d ∈ N, r > 0, Zd,r ≤ C max(d, r)2.

Same bound for σ (see also Besson) and for ζ (see also Jones-Thomas for its
Q-points, using the pfaffian structure - no zero lemma in their case) of
Weierstraß

Example. Let f ∈M(D) a nonconstant fuchsian function, then

∀d ∈ N, ∀r ∈ [0, 1[, Zd,r ≤ C max

(
d4,

1

(1− r)4

)
.


